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GEOLOGICAL MAP OF Stowe (1978)
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Geological Map of the Lomagundi Group near Chinhoyi (after Stowe, 1978)
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Lomagundi Group- post-rift sag basin carbonate platform
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Lower Dolomite, Mcheka Formation, Lomagundi Group
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Plan view of deformed domical stromatolites, Lower Dolomite,
Lomagundi Group




THE GEOLOGY OF TIIE ALASXA MINE

GCEOLOGICAL SECTIONS
THROUGH ALASKA AREA

Alaska Cu Mine, Lomagundi Group



THE GEOLOGY OF THE SHAMROCKE MINE, RHODESIA

-
(Bwtme Ougoctare rean)
‘

Fic. 5. Generalized geological cross section of the
“ Shamrocke mine area,

Thole, 1976, Econ. Geol.

Shamrocke Cu Mine, Lomagundi
Group
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Schematic section to show sedimentary relationships between the Piriwirl and Lomagundi Groups.
Leyshon and Tennick (1988)

Piriwiri Group: Deeper water
facies turbiditic equivalent of the
Lomagundi Group carbonate shelf

Copper Queen sediment-
hosted massive sulphide
Cu-Zn-(Pb-Ag) deposits
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Copper Queen Cu-Zn-(Pb)-
(Ag) SHMS deposit,
Piriwiri Group

STAUCYURE OF THE JunES'

COPDER QUEES, BANYATX

Bahnesann (1957)
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Chenjiri Fm, in upper part of Piriwiri Group- calc-alkaline agglomerates
and felsites- mark the approach of a magmatic arc which collided
during the Magondi Orogeny. Some Au mineralization associated with
these volcanics in “Piriwiri mineral belt”.
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FIG. 12, Map showing ore shoots in relation to quartzite outcrops, Gwaal
River Mine.

Lockett (1979)

Gwaai River Cu Mine, Dete-Kamativi
Inlier: Synmetamorphic replacement
of pyritic interflow metasediments by
chalcopyrite in fold hinges
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Highbury Impact Structure,
Zimbabwe
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Figure 1: Simplified geological map of the Highbury Structure (dashed circle), after Stagman (1961) [6].
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Master et al., 1995, LPSC 16.







West Magondi Belt Magmatic Arc




Our new geochronological data from the
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data-point error ellipses are 2c

Concordia Age = 2027.1 £ 3.4 Ma
(1o, decay-const. errs included)

Z M B 13/6 MSWD (of concordance & equivalence) = 1.8,

Probability (of concordance & equivalence)=0.11

Chiroti Gneiss I

207pp/206pp

_233/205Ph, .
2.55 2.65 2.75 2.85 2.95

Age of intrusion of Chiroti Gneiss Il is 2027.1* 2.7 Ma




ZMB13/5 Chiroti Augen Gneiss



data-point error ellipses are 2¢

207Pp/206pPhp
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238 /206pp

Chiroti Augen Gneiss ZMB13/5 Age: 2038.9 = 2.7 Ma
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Fig. 8. (A) Outcrop of orthogneiss Z DK 13/6, showing the thin, dark, biotite-rich bands which define the foliation, which is also folded. (B) Outcrop of biotite
orthogneiss Z DK 12, showing mafic xenoliths flattened and elongated parallel to foliation. (C) Photomicrograph of Z DK 12 depicting alteration as a result of late
stage fluids which have produced myrmekitic textures along many of the feldspar grain boundaries. Retrograde metamorphism has also taken place, as recorded by
the biotite which has been largely replaced by Fe-rich chlorite. (D) Outcrop of Z DK 13/7B, a heterogeneous biotite gneiss, in which three different phases can be
recognised (i). Fine-grained biotite-bearing quartzofeldspathic gneiss; (ii). Quartzofeldspathic pegmatite; and (iii). Biotite gneiss. (E) Outcrop of weakly-foliated,
porphyritic granitoid gneiss, Z DK 2, with a 12-cm wide slanting aplite dyke, just below the scale. Inset: close up of the porphyritic granitoid gneiss, showing pink K-
feldspar phenocrysts. (F) Composite photomicrograph of augen orthogneiss Z DK 13/10, showing a plane-polarised view (main photograph), and cross-polarised view
(right) of the thin section, indicating foliated fine-grained quartz-feldspar aggregates curved around microcline phenocrysts which have been transformed into augen
via shearing. (G) Outcrop of pink leucogranite Z DK 1, which consists of abundant quartz in addition to large grains of muscovite and microcline feldspar, lending it a
pinkish tinge.



S.M. Glynn, et al.
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MB - Magondi Belt

CKB - Choma-Kalomo Block

DKI - Dete-Kamativi Inlier

OKI - Okwa Inlier

MA - Matsitama Beit

KB - Kheis Belt

ZB - Zambezi Belt

DB - Damara Belt

BIC - Bushveld Igneous Complex
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Proposed new extent
of the Zimbabwe Craton

Mesoproterozoic terrains

Palaeoproterozoic arc
(proposed extent)
Palaeoproterozoic terrains
(outcrop)

- Limpopo Belt

Archaean Cratons

Fig. 10. Sketch map depicting the proposed
new extent of the Archaean Zimbabwe
Craton and Palaeoproterozoic magmatic arc,
in relation to the Kaapvaal Craton (after
Majaule et al., 2001; McCourt et al., 2001;
Mapeo et al., 2004; Kramers et al., 2006;
Jacobs et al., 2008; Eglington et al., 2009;
Naydenov et al., 2014; Lehmann et al,
2015). Key to place names: CT — Cape Town,
J - Johannesburg, G - Gaborone, W -
Windhoek, D - Dete, K - Kalomo, C -
Choma, H - Harare, Ka - Kariba, L - Lusaka.
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1:40 scale mapping of underground crosscut showing veins cutting the Norah Metadolerite Sill,
And locations of samples taken for Rb-Sr geochronology



Microcline-haematite veins
in Norah metadolerite sill




Microcline-haematite veins in Norah metadolerite sill-
NNE-SSW principal stress (01)- D4 deformation phase
during Pan-African Zambezi Orogeny, c. 550 Ma



87Sr/86Sr

Veins in Norah metadolerite sill
87Sr/86Sr vs 87Rb/86Sr
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Carbon isotopes
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Fig.11. Carbon isotope composition of substantially unaltered sedimentary carbonates as a
function of geologic time. Mean &6 '°C values of carbonate groups investigated are indicated
by circles, the vertical bars representing the standard deviation; horizontal arrows show
possible geological time range. Numbers refer to Tables [IA—XVI listing the values yielded
by individual samples of each group or locality. (Values for Phanerozoic carbonates (< 0.57
10%y) according to Craig, 1953; Degens and Epstein, 1962; Keith and Weber, 1964.)
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Fig.11. Carbon isotope composition of substantially unaltered sedimentary carbonates as a
function of geologic time. Mean &6 '°C values of carbonate groups investigated are indicated
by circles, the vertical bars representing the standard deviation; horizontal arrows show
possible geological time range. Numbers refer to Tables [IA—XVI listing the values yielded
by individual samples of each group or locality. (Values for Phanerozoic carbonates (< 0.57
10%y) according to Craig, 1953; Degens and Epstein, 1962; Keith and Weber, 1964.)



Carbon isotopes of
belt sedimentary carbonate rocks
from the Lomagundi Group

Schidlowski et al., 1976
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In a reconnaissance isotopic study of global Precambrian carbonates, by
Schidlowski et al. (1975), the carbonate rocks of the

Lomagundi Group were found to be the most
Isotopically anomalous regional carbonate province in
the world, being very enriched in 13C, with an average
613C value of +8.2%. VPDB.

Subsequent work in the Magondi Basin has shown that high 13C
carbonates are also present in the continental rocks of the
underlying Deweras Group.

The “Lomagundi Event” has now been recognized
globally in carbonate rocks deposited in the time
span 2.2-2.06 Ga.



“Lomagundi” carbon isotope excursion- Global
perturbation of the Carbon Cycle

Figure 1. Variation in iso-
topic composition of car-
bon in sedimentary car-
bonates and organic
matter during Paleopro-
terozoic time. Sources of
isotopic and age data are
given in Table 1. Mean
&'%C values of carbonates
from Fennoscandian
Shield from Karhu (1993)
are indicated by open cir-
cles; data for all other car-
bonate units listed in
Table 1 are indicated by
closed circles. Vertical
bars represent =1 stan-
dard deviation of 5'*C val-
ues, and horizontal bars
indicate uncertainty in
age of each stratigraphic
unit. Arrows combine
dated formations that are
either preceded or fol-
lowed by major 5'*C shift.
BIF denotes field for iron
and manganese forma-
tions. Note that uncertain-
ties given for ages do not
necessarily cover uncer-
tainties in entire deposi-
tional periods of sample
groups. PDB—Peedee
belemnite.
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Carbonates form prominent horizons in the lower
Lomagundi Group, occur in the Deweras Group
as thick packages in the northern part of the
basin, but form only thin lenses elsewhere, and
are quite rare in the Piriwiri Group.

Sulphate pseudomorphs and beds of anhydrite
are relatively common in the Deweras Group,
and also occur in the Lomagundi group.



* The Magondi basin developed from continental rift to passive margin
(and later to a foreland basin), and in the marine successions there
are represented both proximal shallow water and distal deep water
facies, and in all facies there are 13C-enriched carbonate rocks.
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REPUEBLIC OF BOTSWANA oo

Magondi Belt extends to Botswana Botswana Subsurface Geology 1:1 million map



Bennett, J.D., 1970a. Geological map of the

Mosetse-Matsitama area (QDS 2026D and 2126B) . .
(1:125 000) with brief explanation. Geological Survey Map of Matsitama Belt (African Copper, 2010)

of Botswana.




Map of Matsitama Belt (African Copper, 2010)
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High 613C Calcite and dolomite marbles ranging up to 9.9 permil 613C, Matsitama Belt,
Botswana, point to link with the Magondi Belt, rather than the Archaean Zimbabwe Craton
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Evolution model for
the Magondi belt

Master (1991)
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Conclusions |

* The Magondi Supergroup, deposited during the Lomagundi carbon
isotope excursion, shows that the perturbations of the carbon cycle
affected not only marine rocks (e.g., in the Lomagundi group), but
also continental rocks (of the underlying Deweras Group).



Conclusions |

* The basin developed from continental rift to passive margin (and later
to a foreland basin), and in the marine successions there are
represented both proximal shallow water and distal deep water
facies, and in all facies there are 13C-enriched carbonate rocks.



Conclusions |1

* Sulphate evaporites are still preserved in the continental facies; relicts
of former evaporites occur in the shallow marine facies; black shales,
iron and manganese formations, and phosphate beds occur in the
deeper marine facies. Furthermore, the metamorphic grade varies
along and across the strike of the belt, from prehnite-pumpellyite
facies to greenschist, amphibolite and granulite facies.



Conclusions IV

 All these factors indicate that this basin has the potential to
contribute important data concerning the global carbon and sulphur
cycles, and the oxidation state of the oceans, during the Lomagundi
Event (in both the continental and marine realms, and in shallow and
deep water); and it lends itself to the study of the behavior of isotopic
systems at different metamorphic grades.



Our discoveries in the Magondi Belt (1980-
2022)- 1.

 Sulphate evaporite beds (anhydrite, partly replaced by barite) and
gypsum and anhydrite veins at Norah Mine.

* Aeolianites in the Deweras Group- the oldest desert
» Geochronological framework for Magondi Belt
* Andean-type magmatic arc in the western Magondi Belt



Our discoveries in the Magondi Belt (1980-
2022)- 2.

* Proof that the Mangula Granite is part of the Archaean basement, and is
NOT intrusive into the Deweras Rocks at Mhangura.

* Detailed studies (including ore mineral zonation, contact metamorphism by
early mafic sills, relation to faults, permeable zones, and reduced beds)
proving the early diagenetic origin of stratabound sediment-hosted Cu-Ag
mineralization in the Deweras Group

* Detailed mapping showing the origin of quartz-carbonate veins in the
mafic sill at Norah originating from pressure-solution in semipelitic
mineralized wallrocks during the Magondi Orogeny

* Detailed studies using metamorphic textures such as syntectonic
replacement of pyrite by chalcocite or djurleite, showing syntectonic origin
of mineralization in Lomagundi Dolomites at Alaska and Cedric Mines.



Our discoveries in the Magondi Belt (1980-
2022)- 3.

Geochronological studies supporting the lithostratigraphic correlation of the protoliths of the
Dete-Kamativi Inlier with the main Magondi Supergroup.

Discovery of the Lomagundi Carbon Isotope Anomaly (LCIA) also in the continental rocks of the
Deweras Group, showing that it was due to a perturbation of the entire Carbon Cycle, and not
just in the oceans.

Discovery of the LCIA in carbonate rocks of the Matsitama Belt in eastern Botswana, proving that
the belt is composite, and contains a Magondian component thrust onto an older Archaean
gkr\eelgstlone belt, thus explaining the anomalously young Pb ages, and the presence of redbeds in
that belt.

Detailed analysis of the tectonosedimentary setting of the Magondi Belt leading to the
interpretation of its tectonic setting as being deposited in a continental back-arc basin, behind an
Andean-type magmatic arc.

Considerations based on the age and correlations of dykes leading to the conclusion that the
Zimbabwe Craton was attached to the eastern end of the Superior Craton, adjacent to the
Labrador Trough, before rifting away at around 2.1 Ga and colliding with the Kaapvaal Craton
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