DETERMINATION OF OPTIMAL COMBINATION OF RECOVERY RATE (ROM) AND LEVEL (CUT-OFF GRADE) BASED ON THE POLYGON METHOD OF RESERVE ESTIMATION

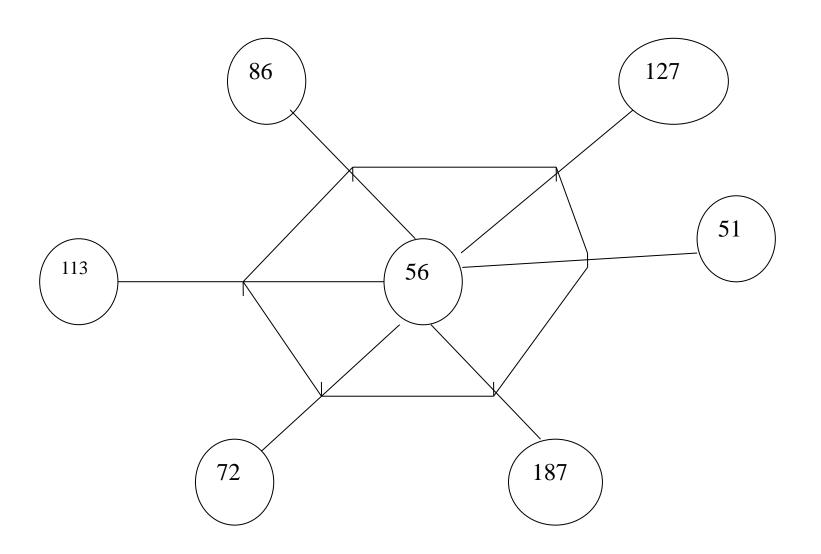
Lyman Mlambo, Chairman of Institute of Mining Research, University of Zimbabwe

Paper presented at the Zimbabwe Geological Society Summer Symposium, 28 November 2014 at the University of Zimbabwe Geology Department

Background to the Presentation

- A summary of a case study on "Optimizing a depletable mine design, Rio Blanco lateritic nickel deposit" presented in detail in Rudawsky (1986).
- Made small format and textual changes in data tables, and omitted some data which does not affect results.

Objectives of the Presentation


- ✓ Demonstrate one way of determining the combination of annual ore extraction rate (ROM) and level (ore grade); and
- ✓ Demonstrate how to set negotiation parameters and their quantitative limits especially in a case where, under normal Government policy framework, the project would not be viable.

Presentation Outline

- Polygon method of reserve estimation
- 2. Accounting costs at various ROMs and Ore grades
- Prices and computation of annual and life-time profits at various ROMs and ore grades
- 4. Cash flows, NPV and IRR
- 5. Sensitivity analysis, negotiation parameters and limits

Polygon method of reserve estimation

- Exploration a test pits program numbering 229 pits.
- minimal cut-off grade sought, 0.95%Ni, and 47 pits successful.
- Figure 31 shows how the polygon is formed around pit 56, given adjacent pits 86, 127, 51, 187, 72, 113.

Exploratory results for the 47 successful pits

Table 27 (text in red included from outside original table)

lable)					
Pit	Polygon Area	Average	Volume-Factor	Metal Assay	Volume-Assay
No.	(square meters)	Thickness (meters)	(cubic meters)	(%Ni)	Product
[1]	[2]	[3]	[4] = 2*3	[5]	[6] = 4*5
145	33,005	12.5	412,563	1.26	519,829
121	85,008	9.0	765,072	1.26	963,991
50	94,185	15.0	1,412,775	1.23	1,737,713
51	71,806	1.0	71,806	1.30	93,348
142	91,609	7.0	641,263	1.13	724,627
134	65,527	5.5	360,399	1.01	364,002
53	88,872	15.0	1,333,080	1.10	1,466,388
133	47,625	4.5	214,313	1.18	252,889
164	15,668	6.0	94,008	1.35	126,911
115	58,243	8.5	495,066	1.38	683,190
56	88,872	9.0	799,848	1.22	975,815
55	68,586	19.0	1,303,134	0.95	1,237,977
58	42,021	19.0	798,399	1.48	1,181,631
28	3,542	7.0	24,794	1.41	34,960
144	72,289	16.0	1,156,624	1.35	1,561,442
48	40,894	6.0	245,364	1.21	296,890
60	27,853	14.0	389,942	1.66	647,304
32	16,100	2.0	32,200	1.26	40,572
139	39,767	7.0	278,369	1.26	350,745
27	27,048	11.0	297,528	1.05	312,404
6	17,710	14.0	247,940	1.14	282,652
21	12,397	11.0	136,367	1.49	203,187

Table 27 continued

Pit	Polygon Area	Average	Volume-Factor	Metal Assay	Volume-Assay
No.	(square meters)	Thickness (meters)	(cubic meters)	(%Ni)	Product
[1]	[2]	[3]	[4]	[5]	[6]
61	98,210	14.0	1,374,940	1.37	1,883,668
25	25,277	9.0	227,493	1.31	298,016
24	26,404	18.0	475,272	1.22	579,832
152	60,053	1.0	60,053	1.55	93,082
126	101,108	10.0	1,011,080	1.24	1,253,739
119	83,720	13.0	1,088,360	1.71	1,861,096
136	64,078	27.0	1,730,106	1.20	2,076,127
33	42,665	12.0	511,980	1.30	665,574
34	31,556	7.0	220,892	1.29	284,951
66	76,475	4.0	305,900	1.04	318,136
52	37,996	8.0	303,968	1.33	404,277
104	33,005	5.5	181,528	1.10	199,680
151	25,760	5.0	128,800	1.06	136,528
220	84,847	8.0	678,776	1.06	719,503
188	81,949	4.0	327,796	1.15	376,965
44	84,526	3.0	253,575	1.09	276,397
157	71,806	4.0	287,224	1.25	359,030
210	63,434	4.5	285,453	1.40	399,634
211	95,634	3.0	286,902	1.19	341,413
169	95,956	6.0	575,736	1.31	754,214
214	74,060	2.0	148,120	1.27	188,112
185	79,856	7.0	558,992	1.24	693,150
184	78,246	2.5	195,615	1.14	223,001
170	81,788	2.5	204,470	1.20	245,364
156	47,978	1.0	47,978	1.02	48,938
Total	2,755,013		22,981,863		28,738,894

 Average ore grade (for deposit) = [(Total volume-assay prod) / total volumetric reserves]% = 1.25%

Table 28

Level	Cut-off Grade (%Ni)	No. of polygons	Average Ore grade (%Ni)	Total Volumetri c reserves (cub.m)	Conversion factors (cu.m	Total Reserve tonnages (ore)
1	0.95	47	1.25	22,981,863	1.675	38,494,620
II	1.05	43	1.28	20,964,452	1.681	35,241,244
III	1.15	34	1.32	17,006,347	1.688	28,706,714

• Assume ore recovery rates in mining and recovery rates in concentration are as given in Table 29.

Table 29

Level	Total reserves (t)	Ore recovery rate in mining (%)	Recoverable ore (t)	Recovery rate in concentration (%) (= plant recovery)
I	38,494,620	93	35,799,997	87
II	35,241,244	90	31,717,119	90
III	28,706,714	85	24,400,707	92

 Table 30 shows the various alternative annual mining rates and the expected life-expectancy of the mine under each level

Table 30

Level	I	II	III
Recoverable Reserves	35,799,997	31,717,119	24,400,707
Annual mining rate q (million t)	Life-Time (yrs)	Life-Time (yrs)	Life-Time (yrs)
3.0	11.9	10.6	8.1
3.5	10.2	9.1	7.0
4.0	9.0	7.9	6.1
4.5	8.0	7.0	5.4
5.0	7.2	6.3	4.9
5.5	6.5	5.8	4.4
6.0	6.0	5.3	4.1
6.5	5.5	4.9	3.8
7.0	5.1	4.5	3.5
7.5	4.8	4.2	3.3

- Assume concentrate level (output) of 20%Ni.

$$CR = \frac{Average \ metal \ content \ in \ concentrate}{Average \ grade \ of \ ore * Recovery \ rate \ in \ concentration}$$

$$CR_{I} = 20\% \ Ni/(1.25\% \ Ni * 0.87) = 18.39 \ t. ore / t. concentrate$$

$$CR_{II} = 20\% \ Ni/(1.28\% \ Ni * 0.90) = 17.36 \ t. ore / t. concentrate$$

 $CR_{III} = 20\% Ni/(1.32\% Ni*0.92) = 16.47 t.ore/t.concentrate$

Accounting Costs

- Total operating costs (TOC) = Total Costs of Mining (TCM) + Concentration Costs (CC)
- TCM vary with q and level, while CC tend to be the same for all levels (we shall assume it anyway), and is assumed to be US\$55/ton of concentrate.
- TCM at each level is assumed to be a cubic function of q (a normal assumption for cost functions in economics) as shown in equations below in which TCM is in US\$'000 and q is in million tons:

$$TCM_{I} = 5.234 + 1.710q - 88q^{2} + 15q^{3}$$

$$TCM_{II} = 6,030 + 1,507q - 65q^2 + 18q^3$$

$$TCM_{III} = 6,980 + 1,393q - 58q^2 + 22q^3$$

- The following three panels of Table 31 (Rudawsky, 1986, pp.139-140) (corresponding to the three levels) show:
- ✓ total mining cost (subst. q into cost equation),
- ✓ average cost of mining,
- √ feed cost per ton of concentrate,
- ✓ average total cost per ton of concentrate for the various annual mining rates (ROMs).
- Feed (mining) cost/t.concent. (ACM2) = Concentration ratio (CR) * Cost of mining a t.of ore (ACM1)
- Average total cost of producing a ton of concentrate
 (ATC) = Feed cost/t.concentrate + CC

Level I

Level I						
Annual		Total cost	Aver.Cost	Feed cost	Conc.	Average
Rate		of mining	of Mining		Cost	Total Cost
q		тсм	ACM1	ACM2	СС	АТС
[Mill.tons]		\$'000	[\$/ton ore]	[\$/ton conc.]	[\$/ton conc.]	[\$/ton conc.]
	3.0	9,977	3.33	61.24	55.00	116.24
	3.5	10,784	3.11	57.16	55.00	112.14
	4.0	11,626	2.91	53.45	55.00	108.45
	4.5	12,514	2.78	51.14	55.00	106.14
	5.0	13,459	2.69	49.50	55.00	104.50
	5.5	14,473	2.63	48.39	55.00	103.39
	6.0	15,566	2.59	47.71	55.00	102.71
	6.5	16,750	2.58	47.39	55.00	102.39
	7.0	18,037	2.58	47.39	55.00	102.39
	7.5	19,437	2.59	47.66	55.00	102.66

Level II

Level II			T	Г	T
Annual	Total cost	Aver.Cost	Feed cost	Conc.	Average
Rate	of mining	of Mining		Cost	Total Cost
<u>q</u>	ТСМ	ACM1	ACM2	СС	ATC
[Mill.tons]	\$'000	[\$/ton ore]	[\$/ton conc.]	[\$/ton conc.]	[\$/ton conc.]
3.0	10,452	3.48	60.48	55.00	115.48
3.5	5 11,280	3.22	55.95	55.00	110.95
4.0	12,170	3.04	52.82	55.00	107.82
4.5	5 13,136	5 2.92	50.67	55.00	105.67
5.0	14,190	2.84	49.27	55.00	104.27
5.5	5 15,347	2.79	48.44	55.00	103.44
6.0	16,620	2.77	48.08	55.00	103.08
6.5	5 18,023	3 2.77	48.13	55.00	103.13
7.0) 19,568	3 2.80	48.53	55.00	103.53
7.5	5 21,270	2.84	49.23	55.00	104.23

Level III

Level III		1	T	T	T
Annual	Total cost	Aver.Cost	Feed cost	Conc.	Average
Rate	of mining	of Mining		Cost	Total Cost
q	тсм	ACM1	ACM2	сс	ATC
[Mill.tons]	\$'000	[\$/ton ore]	[\$/ton conc.]	[\$/ton conc.]	[\$/ton conc.]
3.	11,231	3.74	61.66	55.00	116.60
3.	5 12,088	3.45	56.88	55.00	111.8
4.	13,032	3.26	53.66	55.00	108.6
4.	5 14,079	3.13	51.53	55.00	106.5
5.	15,245	3.05	50.22	55.00	105.22
5.	5 16,547	3.01	49.55	55.00	104.5
6.	18,002	3.00	49.42	55.00	104.42
6.	5 19,626	3.02	49.73	55.00	104.7
7.	21,435	3.06	50.43	55.00	105.4
7.	5 23,446	3.13	51.49	55.00	106.4

 (At this stage it is tempting to make the choice of optimal combination on the basis of least average total cost of producing the concentrate (either q = 6.5 at level I or q = 7.0 at level I).

 (However this only looks at the cost side only, ignoring revenue)

Prices and profits

 Table 32 (Rudawsky, 1986, p.140): 20% Nickel Concentrates Prices, f.o.b.

Annual output	Price (f.o.b)
(in m. tons of concentrates)	(\$/ton of concentrates)
Up to 200,000	140.00
200,000 – 249,999	137.75
250,000 – 299,999	135.40
300,000 – 349,999	132.85
350,000 - 399,999	130.05
400,000 – 449,999	126.70
450,000 – 499,999	123.20

- The following table then gives the for the various mining rates (ROMs) at the three levels of recovery:
- ✓ output levels,
- ✓ prices,
- √ revenues,
- ✓ costs and
- ✓ profits.

Table 33: Revenues, Costs, and Profits, Rio Blanco Deposit

-		R10 B	Tanco Depo	SIT				and the second
Annual Output	f.o.b. Price	Total Revenue	Marginal Revenue	ATC	TC	Profit per year	Life- Time	Profit over the Life-Time (\$)
(m. tons of		(\$)	(\$/ton)	(\$/ton)	(\$)	(\$)	(31.2)	(4)
concentrates) (2)	concentrates) (3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
163,132 190,321 217,510 244,698 271,887 299,076 326,264 353,453 380,642 407,830	140.00 140.00 137.75 137.75 135.40 135.40 132.85 130.05 130.05	22,838,480 26,644,940 29,962,002 33,707,149 36,813,499 40,494,890 43,344,172 45,966,562 49,502,492 51,672,061	140.00 122.00 137.75 114.25 135.40 104.80 96.45 130.05 79.80	116.24 112.14 108.45 106.14 104.50 103.39 102.71 102.39 102.66	18,962,463 21,342,596 23,588,959 25,972,245 28,412,191 30,921,467 33,510,575 36,190,052 38,973,934 41,867,827	3,876,016 5,302,343 6,373,043 7,734,903 8,401,308 9,573,422 9,833,597 9,776,509 10,528,557 9,804,233	11.9 10.2 9.0 8.0 7.2 6.5 6.0 5.5 5.1 4.8	46,124,590 54,083,898 57,357,382 61,879,226 60,489,414 62,227,245 59,001,579 53,770,801 53,695,643 47,060,319
172,811 201,613 230,414 259,217 288,018 316,820 345,622 374,424 403,226	140.00 137.75 137.75 135.40 135.40 132.85 132.85 130.05 126.70	Level 24,193,540 27,772,190 31,739,528 35,097,981 38,997,637 42,089,537 45,915,882 48,693,841 51,088,734 54,737,947	124.25 137.75 116.60 135.40 107.35 132.85 96.45 83.15 126.70	115.45 110.95 107.82 105.67 104.27 103.44 103.08 103.13 103.53 104.23	19,951,029 22,368,962 24,843,237 27,391,460 30,031,636 32,771,860 35,626,715 38,614,347 41,745,987 45,030,278	4,242,510 5,403,228 6,896,291 7,706,521 8,966,000 9,317,676 10,319,166 10,079,493 9,342,746 9,707,669	10.6 9.1 7.9 7.0 6.3 5.8 5.3 4.9 4.5 4.2	44,970,606 49,169,371 54,480,695 53,945,644 56,485,800 54,042,521 54,691,579 49,389,520 42,042,357 40,772,207
182,149 212,508 242,866 273,224 303,582 333,940 364,299 394,657 425,015 455,373	140.00 137.75 137.75 135.40 132.85 132.85 130.05 130.05 126.70 123.20	Level 25,500,860 29,272,977 33,454,791 36,994,529 40,330,868 44,363,929 47,377,084 51,325,142 53,849,400 56,101,953	124.25 137.75 116.60 109.90 132.85 99.25 130.05 83.15 74.20	116.66 111.88 108.66 106.53 105.22 104.55 104.42 104.73 105.43 106.49	23,775,395 26,389,819 29,106,552 31,942,898 34,913,427 38,040,101 41,332,427 44,809,331 48,492,670	5,497,582 7,064,972 7,887,976 8,387,970 9,450,502 9,336,982 9,992,714 9,040,069 7,609,282	4.9 4.4 4.1 3.8 3.5 3.3	34,435,997 38,483,073 43,096,329 42,595,071 41,101,052 41,582,208 38,281,627 37,972,314 31,640,239 25,110,631 (10) = (8) x (9)
	Output (m. tons of concentrates) (2) 163,132 190,321 217,510 244,698 271,887 299,076 326,264 353,453 380,642 407,830 172,811 201,613 230,414 259,217 288,018 316,820 345,622 374,424 403,226 432,028 182,149 212,508 242,866 273,224 303,582 333,940 364,299 394,657 425,015 455,373	Output (m. tons of concentrates) Price (\$/ton of concentrates) (2) (3) 163,132 140.00 190,321 140.00 217,510 137.75 244,698 137.75 271,887 135.40 326,264 132.85 353,453 130.05 380,642 130.05 407,830 126.70 172,811 140.00 201,613 137.75 230,414 137.75 230,414 137.75 288,018 135.40 316,820 132.85 345,622 132.85 374,424 130.05 403,226 126.70 432,028 126.70 182,149 140.00 212,508 137.75 273,224 135.40 303,582 132.85 333,940 132.85 334,657 130.05 425,015 126.70 455,373 123.20	Annual Output Price TR (m. tons of concentrates) (2) (3) (4) 163,132 140.00 22,838,480 190,321 140.00 26,644,940 217,510 137.75 29,962,002 244,698 137.75 33,707,149 271,887 135.40 36,813,499 299,076 135.40 40,494,890 326,264 132.85 43,344,172 353,453 130.05 45,966,562 380,642 130.05 49,502,492 407,830 126.70 51,672,061 172,811 140.00 24,193,540 201,613 137.75 27,772,190 230,414 137.75 31,739,528 259,217 135.40 38,997,637 316,820 132.85 42,089,537 345,622 132.85 45,915,882 374,424 130.05 48,693,841 403,226 126.70 51,088,734 403,226 126.70 54,737,947 432,028 126.70 54,737,947 432,028 137.75 29,272,977 242,866 137.75 33,454,791 273,224 135.40 36,994,529 303,582 132.85 40,330,868 333,940 132.85 40,330,868 333,940 132.85 40,330,868 333,940 132.85 40,330,868 333,940 132.85 44,363,929 364,299 130.05 51,325,142 425,015 126.70 53,849,400 455,373 123.20 56,101,953	Annual Output Price (\$/ton of concentrates) (2) (3) (4) (5) (4) (5) (5) (1) (1) (1) (2) (3) (4) (5) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Output (m. tons of concentrates) (m. tons of concentrates) (\$/\$ton of conc	Annual	Annual	Annual Output

- (At this stage it is also tempting to choose the q and level with the highest yearly profits (q=7.0, level I) or the highest life-time profits (q=5.5, level I)).
- However, we need to take into account time-value of money, depreciation, depletion allowances, tax
- Important observation: these results show that:
- ✓ annual profits are maximized at higher rates of recovery (q)
- ✓ while life-time profits are maximized at a lower rate of extraction

Cash Flows and Present Value Computations

Capital investment

- ✓ Replaceable equipment, replaced at end of 5 years. Replacement is at historic cost.
- √ life-time long investment
- Depreciation allowance straight line method
- Percentage depletion allowance at 15%
- Royalty of 12.5% of gross sales income
- 50% corporate tax rate applied on accounting profits
- There is some salvage value
- Minimum rate of return (discount rate) of 20%
- Table 34 shows capital investments and salvage values for the various extraction rates (ROMs):

Annual Rate q (million t of ore)	Expected life-time (yrs)	Capital investment requirements (US\$'000)	% salvage	Salvage value
3.0.	Life-time 5 yrs	3,750 <u>9,983</u> 13,733	20% 20%	750 <u>1,997</u> 2,747
3.5	Life-time 5 yrs	3,850 <u>10,783</u> 14,633	23% 20%	886 <u>2,157</u> 3,043
4.0	Life-time 5 yrs	4,394 <u>12,992</u> 17,386	25% 20%	1,099 <u>2,598</u> 3,697
4.5	Life-time 5 yrs	4,515 <u>13,481</u> 17,996	28% 20%	1,264 <u>2,696</u> 3,960
5.0	Life-time 5 yrs	4,532 <u>14,074</u> 18,606	31% 20%	1,405 <u>2,815</u> 4,220
5.5	Life-time 5 yrs	4,893 <u>16,247</u> 21,140	34% 20%	1,664 <u>3,249</u> 4,913
6.0	Life-time 5 yrs	5,129 <u>17,413</u> 22,542	39% 20%	2,000 <u>3,483</u> 5,483
6.5	Life-time 5 yrs	5,530 <u>17,756</u> 23,286	44% 20%	2,433 <u>3,511</u> 5,944
7.0	Life-time 5 yrs	24,037	27%	6,490
7.5	Life-time 5 yrs	25,216	30%	7,565

Depreciation allowances are summarized in Table 35

Table 35 summarizes the depreciation allowances for the varying rates and levels of extraction.

Table 35 : Annual Depreciation allowances, Rio Blanco Deposit

		KIO DI	anco bepos				
		Leve	el_I_	Level	II	Level	III
Annual Rate q (million m. tons of ore)	Depreciable Investment (thousands of U.S. dollars)	Life- time (in years)	Annual Deprec. (thou- sands of U.S. \$)	Life- time (in years)	Annual Deprec. (thou- sands of U.S. \$)	Life- time (in years)	Annual Deprec (thou- sands U.S. \$
3.0	3,000 7,986	11.9 5.0	252 1,597 1,849	10.6 5.0	283 1,597 1,880	8.1 5.0	370 1,597 1,967
3.5	2,964 8,626	10.2 5.0	291 1,725 2,016	9.1 5.0	326 1,725 2,051	7.0 5.0	423 1,725 2,148
4.0	3,295 10,394	9.0 5.0	366 2,079 2,445	7.9 5.0	417 2,079 2,496	6.1 5.0	540 2,079 2,619
4.5	3,251 10,785	8.0 5.0	406 2,157 2,563	7.0 5.0	464 2,157 2,621	5.4 5.0	602 2,157 2,759
5.0	3,127 11,259 14,386	7.2 5.0	434 2,252 2,686	6.3 5.0	496 2,252 2,748	4.9 {	2,936
5.5	3,229 12,998 16,227	6.5 5.0	497 2,600 3,097	5.8 5.0	557 2,600 3,157	4.4 {	3,688
6.0	3,129 13,930 17,059	6.0 5.0	522 2,786 3,308	5.3	590 2,786 3,376	4.1	4,161
6.5	3,097 14,245 17,342	5.5 5.0	563 2,849 3,412	4.9{	3,539	3.8	4,564
7.0	17,547	5.0	3,509	4.5	3,899	3.5	5,013
7.5	17,651	4.8	3,677	4.2	4,203	3.3	5,349

 At this stage all data necessary for cash flow development are available.

 For level I at the mining rate (ROM) of 3 million tons Table 36 gives the cash flow, the NPV and the IRR.

 There are 30 different such cash flow tables since there are three levels, each level with 10 alternative ROMs.

Table 36 :Annual Cash Flows, N.P.V. @ 20%, and D.C.F. Rate of Return, Rio Blanco Deposit

Rate: 3.0 million m. tons of ore/year, Level I; Life-time: 11.9 years. (in thousands of U.S. Dollars)

Item/Year			per year)	5	(per year) 6-9	10	11	12
(1) TR		_	22,838	22,838	22,838	22,838	22,838	20,55
(2) Royalty		_	2,855	2,855	2,855	2,855	2,855	2,57
(3) Working		_	19,983	19,983	19,983	19,983	19,983	17,98
	1. depr.)	_	17,113	17,113	17,113	17,113	17,113	15,40
	Allowance	_	1,849	1,849	1,849	1,849	1,849	1,66
(6) Balance		_	1,021	1,021	1,021	1,021	1,021	91
	Allowance	_	511	511	511	511	511	45
	Income	-	510	510	510	510	510	45
(9) Tax Lia		_	255	255	255	255	255	22
	ax Prof.	-	255	255	255	255	255	23
(11) Noncash		_	2,360	2,360	2,360	2,360	2,360	2,12
		733	0	9,983	0	9,983	0	200
(13) Salvage		_	0	1,997	0_	1,997	0_	2,74
(14) Annual	Cash Flow* (13,	,733)	2,615	(5,371)	2,615	(5,371)	2,615	5,10
(15) Dis. Fa		.000	2.589	0.402	1.041	0.162	0.135	0.11
(16) N.P.V.	@ 20% (13.	,733)	6,770	(2,159)		(868)	352	57
(17) Cum. N.		,733)	(6,963)	(9,122)		(7,269)	(6,917)	(6,34
	R.O.R.			4.549	%			

(1) = data from Table 33; (2) = (1) $\frac{2}{5}$ 8; (3) = (1) - (2); (4) = data from Table 35; (5) = data from Table 35; (6) = (3) - (4) - (5); (7) = the smaller value of (3) x .15; or (6) $\frac{2}{5}$ 2; (8) = (6) - (7); (9) = (8) x .50; (10) = (8) - (9); (11) = (5) + (7); (12) = data from Table 34; (13) = data from Table 34; (14) = (10) + (11) - (1) + (13). Items (1), (4), and (5) for the last year of operations are multiplied by the fraction 0.9.

^{*}A number in parentheses indicates a negative value.

 Table 45 gives a summary of the NPVs and the IRR for all the levels and all the ROMs: The results of all thirty alternative combinations of rates and levels are summarized in Table 45 and Figure 32 below:

Table 45 :Summary Results, N.P.V. @ 20%, and D.C.F. Rate of Return, Rio Blanco Deposit

Annual Rate	Level I		Level II N.P.V. R.O.R.		N.P.V. R.O.R.	
of q (million m. tons of ore/year)	N.P.V. (thousand U.S. Dollars)	$\frac{R.0.R.}{(\%)}$	N.P.V.	K.O.K.	1101 070	11300111
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0	(6,345) (4,024) (3,042) (1,432) (1,934) (2,535) (4,287) (7,021) (1,197) (4,211)	4.54 9.87 14.31 17.20 16.03 14.98 11.22 4.62 17.92 12.90	(5,770) (3,442) (2,808) (2,802) (2,447) (4,514) (5,329) (1,616) (4,361) (5,177)	4.89 12.37 14.19 13.81 14.34 9.75 7.64 17.05 11.94 10.60	(5,796) (4,533) (4,614) (4,664) (767) (969) (2,661) (2,364) (5,092) (8,051)	4.44 7.25 7.66 6.54 18.24 17.93 14.45 14.95 9.04 3.13

 All the thirty combinations of q and levels are not viable at the required minimum return of 20%.

 Now, what is the way forward – are we going to give up on the project just like that?

Sensitivity analysis

- Management realized that if they were to have royalty rate reduced from 12.5% to 10% several combinations would yield positive NPVs and IRRs>20% (do the exercise).
- (Other parameters that may be changed in sensitivity analysis include:
 - ✓ CIT
 - ✓ Depreciation method (from straight-line to accelerated)
 - ✓ Incentives, such as tax holidays, etc.)
- These then become subjects for negotiation with government so that the project may become viable.

Reference

 Rudawsky, O. (1986). Mineral Economics – Development and Management of Naturals Resources. Developments in Economic Geology, 20. Elsevier. Amsterdam.

THANK YOU!!